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The generalization of the Dorokhov-Mello-Pereyra-Kumar equation for the description of transport in
strongly disordered systems replaces the symmetry parameter � by a new parameter �, which decreases to zero
when the disorder strength increases. We show numerically that although the value of � strongly influences the
statistical properties of transport parameters � and of the energy-level statistics, the form of their distributions
always depends on the symmetry parameter � even in the limit of strong disorder. In particular, the probability
distribution is p������ when �→0 and p����exp�−c�2� in the limit �→�.

DOI: 10.1103/PhysRevB.82.113412 PACS number�s�: 73.23.�b, 71.30.�h, 72.10.�d

It has recently been shown by Muttalib et al.1,2 that the
Dorokhov-Mello-Pereyra-Kumar equation3,4 �DMPKE� for
the description of electronic transport in disordered quasi-
one-dimensional systems can be generalized to comprise also
the strongly disordered case. They found that the main dif-
ference between the diffusive and localized regime is re-
flected in the spatial distribution of the electrons inside the
sample. The DMPKE was derived under the assumption that
the electron density is homogeneous. This assumption is
valid in the limit of weak disorder �diffusive regime� and
leads to universal behavior of the electron transport, which is
determined by only three parameters: the ratio Lz /� of the
system length Lz to the mean-free path �, the number of
scattering channels N, and the symmetry parameter � of the
respective random matrix ensemble. The latter determines
the statistical properties of the model, for instance, the fluc-
tuation of the conductance, var g��−1.

The derivation of the DMPKE is based on the following
representation of the transfer matrix,5 which describes the
scattering of electrons coming from the left �right�:

T = �u�1� 0

0 u�2� ���1 + � ��

�� �1 + �
��u�3� 0

0 u�4� � , �1�

where � is a N-dimensional real diagonal matrix and the
structure of the matrices u is given by the physical symmetry.
The diagonal elements �a �a=1,2 , . . . ,N� define the conduc-
tance of the system via the Economou-Soukoulis formula6

g =
e2

h
�

a

N
1

1 + �a
. �2�

The probability distribution p��� of parameters �a is given
by the DMPKE,3,4

�pLz
���

��Lz/��
=

2

�N + 2 − �

1

J �
a

N
�

��a
��a�1 + �a�J

�pLz
���

��a
	

�3�

with J
�a�b
N ��a−�b��. The parameterization �a= �cosh xa

−1� /2 introduces a new set of variables xa �x1�x2� . . .�,

which follows the Wigner-Dyson statistics. The probability
distribution p��a� of the normalized differences �a
= �xa+1−xa� / xa+1−xa� is well described by the Wigner
distribution,7

P��	� = A�	� exp�− B�	2� , �4�

where for �=1,2 ,4: A1=
 /2, B1=
 /4, A2=32 /
2,
B2=4 /
, A4=218 /36
3, and B4=64 /9
, respectively.

Several investigations showed8–10 that the same function
also describes the probability distribution p�s� of the energy-
level statistics in the diffusive regime. Here, s is the differ-
ence of consecutive energy eigenvalues s= ��i+1−�i� / s̄ di-
vided by the mean level spacing s̄.

In strongly disordered samples, the propagation of the
electron is not diffusive. We cannot expect that all paths
across the sample are equivalent. Mathematically, this leads
to the reformulation of the DMPKE into the more general
form

�pLz
���

��Lz/��
=

1

J
�

a

N
�

��a
��a�1 + �a�KaaJ

�pLz
���

��a
	 , �5�

where parameters Kab depend on the statistical properties of
matrices u in Eq. �1�. The explicit form of Kab is determined
by the model symmetry.11–13 The Jacobian J now have a
form

J 
 �
a�b

N

��a − �b��ab, �ab 

2Kab

Kaa
. �6�

Although Eq. �5� was derived only for orthogonal systems
��=1�, it can be shown to be valid also for �=2 and �=4.
The conductance is still given by Eq. �2�, it becomes implic-
itly a function of the spatial distribution of the electrons.

The main difference between the DMPKE and its gener-
alized version lies in the presence of the parameters �ab in
the Jacobian. Later work showed12 that it is possible to ap-
proximate all �ab by a single parameter �. Similarly, the
parameters Kaa are substituted by a constant, which is on the
order of unity in the limit of strong disorder. It was argued1
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that �→� in the diffusive regime but �→0 when the disor-
der increases. This assumption was confirmed, at least for the
orthogonal symmetry, by numerical work.12

If � really decreased to zero, one would expect that the
probability distribution of �a and that of the level statistics
should converge to the Poisson distribution,

PP�	� = e−	. �7�

Such changes in the distributions due to the increase in the
disorder are really observed both in the parameters �a �Ref.
14� and in the level statistics. In the latter case, it has been
used for the estimation of critical parameters of the metal-
insulator transitions.10,15–17

The role of � and its relation to the symmetry parameter �
still requires a more detailed discussion. Therefore, we inves-
tigate in this Brief Report the shape of numerically obtained
distributions p�	� in the limit of strong disorder. We show
that, although � indeed decreases to zero, both the distribu-
tion of �= �x2−x1� / x2−x1� and the level statistics p�s� do
depend on the symmetry parameter �. In particular, the
small-	 behavior of these distributions is always given by

p�	� � 	� �8�

independently on the strength of the disorder. However, this
power-law behavior is observed only in a very narrow range
close to zero.

The systems to be investigated are defined on a two-
dimensional �2D� square lattice with lattice constant al and
described by a tight-binding lattice Hamiltonian with
nearest-neighbor hopping terms,

H = �
r,�

r�cr�
† cr� + �

r�r��,���

trr�
���cr�

† cr���. �9�

Here, �= �1 /2 is the electron spin, r are the sites of the 2D
lattice of size L2, r are the appertaining random on-site en-
ergies distributed according to the box probability
PBox�r�= �1 /W���W /2− �r��, and W measures the strength
of the disorder. Periodic boundary conditions are applied in

both directions. For the symplectic Ando model, trr�
��� is a

2�2 matrix with

txx�
��� = �V1 − V2

V2 V1
�, tyy�

��� = �V1 − iV2

− iV2 V1
� �10�

and V1
2+V2

2=V2=1. For the orthogonal model, trr�

trr�
�������. Energies and lengths are measured in units of V and

lattice constant al, respectively. For E=0 and V1=0.5, the
symplectic model exhibits a metal-insulator transition at a
critical disorder Wc�5.84.18

The limiting behavior of the distribution p�	� is better
visible when the distribution of the logarithm of 	, p�ln 	�, is
studied instead. From the equation

p�	�d	 = p���d�, � = ln 	 , �11�

we obtain that the relation p�	��	� corresponds to

ln p��� � �� + 1��, � → − � . �12�

Similarly, the large-	 tail of the distribution can be analyzed
from the function

ln�− ln p���� = �� �13�

with �=2 and 1 for the Wigner and Poisson distribution,
respectively.

In the limit of strong disorder, x1�1, the typical conduc-
tance is given by the smallest parameter x1 as g�e−x1. The
parameter x1 determines the localization length � as
x1=2L /� �L���. Thanks to this relation, the transport prop-
erties of strongly disordered system can be understood from
the numerical analysis of relatively small samples, provided
that L��.

We analyze statistical ensembles of Nstat�108 square
samples19 �typical size is L=14� and collect the statistical
distribution of the normalized difference. The results are dis-
played in Figs. 1–4 for the 2D Ando model and for the 2D
orthogonal model. Figure 1 exhibits the distribution p��� for
various strengths of the disorder. The data show that for
small disorder �W=2� the distribution is very similar to the
Wigner surmise. Although the form of the distribution
changes when disorder increases, the decrease p���→0 is
noticeable even for W=50. The small-� behavior of the dis-
tribution is better visible in Fig. 2 which plots the distribu-
tion p�ln ��. Our numerical data for any disorder show that
the distribution p�ln �� becomes parallel to the Wigner sur-
mise for very small �. This proves that ln p�ln �����
+1�ln � and, consequently, p������ �Eq. �12��. However,
the powerlike behavior p������ is observed only for a very
small part of the statistical ensemble. For instance, the linear
behavior p�ln �����+1�ln � is observable only for
ln �� ln �m=−4 �W=10�, −7 �W=20� �Fig. 2�. The prob-
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FIG. 1. �Color online� The distribution p��� for the 2D Ando
model in the metallic, critical �W=5.84�, and localized regime. The
linear size of the system is L=14. The data are compared with the
Wigner surmise P4��� and with the Poisson distribution PP���.
While p��� is very similar to the Wigner surmise in the metallic
regime �W=2�, it resembles the Poisson distribution when the dis-
order increases. However, for any disorder strength, p��� decreases
to zero when �→0.
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ability p to find a system with such a small value of �
decreases rapidly when the disorder increases: p�10−3

�W=10� but p�10−6 for W=20.
According to single-parameter scaling theory,20 the same

change in the distribution function is expected when the size
L of the system increases while disorder is fixed. Owing to
the necessity to analyze huge statistical ensembles, we did
not study the size dependence of p��� for the Ando model.
However, we checked the L dependence for 2D orthogonal
systems �Fig. 3�. Again, the distribution p�ln �� follows Eq.
�12� with �=1 provided that � is sufficiently small. Also, our
data support the scaling idea: two distributions are similar if

they correspond to systems with the same value of ln g�.
To estimate the large-� form of the distribution, we plot

in Fig. 4 p��� for the Ando model and compare it with the
Wigner distribution P4 and the Poisson distribution. Again,
our data confirm that p��� is never identical with the Poisson
distribution. For large values of �, the distribution is
p����exp�−c�b� with exponent b�2, at least in the limit of
��1.

The numerical investigation of the energy-level
statistics generated a similar result. For large disorder,
W�Wc�5.84, the large-s part of the level statistics p�ln s�
is well described by the Poisson distribution as shown in Fig.
5. In the opposite limit s→0, a behavior close to the Wigner
surmise P4 is observed in which the range of the agreement
is continuously diminishing with increasing disorder. For
very large W�20, however, only the downturn can still be
noticed. The eigenvalues have been calculated within an en-
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FIG. 2. �Color online� The distribution p�ln �� for the 2D Ando
model. The linear size of the samples is L=14. The solid curves
represent the Wigner P4 and the Poisson PP distributions. With
increasing disorder, the distribution of p�ln �� changes. It is similar
to Poissonian in the bulk, but for very small �, we see the linear
behavior ln p�ln ��� ln �. The straight solid lines are fits for
W=5.84, 10, 14, and 20 with slopes 4.789, 3.78, 3.0, and 3.3,
respectively.
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FIG. 3. �Color online� The distribution p�ln �� for a 2D or-
thogonal model with anisotropic hopping �txx�=0.9tzz��. Two en-
sembles with different values of L and W but with the same value of
ln g� possess the same distribution p���. The Wigner surmise P1

and the Poisson distribution PP are also plotted. Fits shown by
straight lines confirm that ln p�ln ��� ln � with slopes given in the
legend. Therefore, p����� when �→0. The number of samples is
Nstat=1.6�109 for L=20 �W=12�, and about 108 else.
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FIG. 4. �Color online� The same as in Fig. 1 but on a logarith-
mic scale for various strength of the disorder and L=14. Solid lines
are Wigner and Poisson distributions. For the localized regime �W
�10�, the mean value of the logarithm of the conductance is given
in the legend.
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FIG. 5. �Color online� The energy-level statistics p�ln s� of a
strongly disordered Ando model. In the limit of s→0, a clear �s�+1

behavior is observed for W=10 from the comparison with the
Wigner surmise P4 for symplectic symmetry. With increasing W,
the range where this agreement holds shifts to smaller s. The Pois-
son fit �upper solid line� is valid only for larger s. The system size
is L=20 and the disorder strengths shown are W=10 ���, 13 ���,
15 ���, and 25 ���, respectively.
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ergy interval −0.5��i�0.5 by direct diagonalization of the
respective �2L�2� �2L�2 matrices with up to 3�105 realiza-
tions. Additional calculations for larger system sizes corrobo-
rated the results shown here for L=20.

Our numerical data indicate that the generalized DMPKE
fails to describe correctly the small-� behavior of p���. Con-
trary to the expected behavior p������, we observe for any
disorder that p������. This restriction influences the statis-
tical properties of the conductance only weakly since
samples with small � represent only a very small part of the

total statistical ensemble of the Nstat samples. Also, as shown
in Fig. 6, samples with small � possess a large value of the
smallest exponent x1� x1�, and consequently have also a
small conductance. Therefore, their contribution to the con-
ductance statistics is negligible. We expect that the GD-
MPKE gives a correct value of the mean ln g but its descrip-
tion of the small-g-tail of the distribution p�ln g� can
eventually differ from numerical �experimental� data.

The aim of this Brief Report was to verify that the physi-
cal symmetry of the model governs the small 	 behavior of
the distribution p�	�, where 	 denotes the normalized differ-
ences �=x2−x1 / x2−x1� or, for the energy-level statistics,
the normalized difference of consecutive eigenvalues
s= ��i+1−�i� / s̄. This was done by a numerical study for the
metallic and also in the strongly localized regime. Our re-
sults confirm that the generalized DMPK equation is not in
contradiction with conclusions provided by random matrix
theory.

We also showed that the distribution p��� never corre-
sponds entirely to the Poisson distribution, although �→0.
p��� is not universal in the strongly disordered limit since
� depends on the disorder. For small �, we found a distribu-
tion p������ and in the limit of large � it behaves as
exp�−c�2�. This observation is also consistent with the gen-
eralized DMPK equation. The Poisson distribution indicates
that the two parameters, x1 and x2, are statistically indepen-
dent. On the contrary, as discussed in previous work,12,21 the
statistical correlations survive for any disorder strength and
are responsible for the non-Gaussian distribution of the loga-
rithm of the conductance.

P.M. thanks the Grant Agency VEGA for financial support
of the Project No. 0633/09.
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FIG. 6. �Color online� Plot of parameters x1 and x2 for a statis-
tical ensemble of 104 samples. The size is L=200 and disorder
W=8. The inset shows the value of the difference x2−x1 as a func-
tion of x1. Solid lines mark mean values, x1�=14.09 and
x2−x1�=6.08. The data confirm the level repulsion since x2 and x1

never coincide. Note that small values of � are observed only in
samples with relatively large value of x1� x1�. Such samples only
marginally influence the mean conductance.
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